Adult Stem Cell

What are Stem Cells » Adult Stem Cell

Also known as somatic (from Greek Σωματικóς, "of the body") stem cells and germline (giving rise to gametes) stem cells, they can be found in children, as well as adults.
Pluripotent adult stem cells are rare and generally small in number but can be found in a number of tissues including umbilical cord blood. Bone marrow has been found to be one of the rich sources of adult stem cells  which have been used in treating several conditions including Spinal cord injury , Liver Cirrhosis , Chronic Limb Ischemia  and Endstage heart failure . The bone marrow stem cell quantity has been found to be declining with age and in reproductive age group of females it is relatively lesser than in males of same age group . A great deal of adult stem cell research to date has had the aim of characterizing the capacity of the cells to divide or self-renew indefinitely and their differentiation potential. In mice, pluripotent stem cells are directly generated from adult fibroblast cultures. Unfortunately, many mice do not live long with stem cell organs.
Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).
Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants. Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses.
The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.
An extremely rich source for adult mesenchymal stem cells is the developing tooth bud of the mandibular third molar. The stem cells eventually form enamel (ectoderm), dentin, periodontal ligament, blood vessels, dental pulp, nervous tissues, and a minimum of 29 different end organs. Because of extreme ease in collection at 8–10 years of age before calcification and minimal to no morbidity, these will probably constitute a major source of cells for personal banking, research and current or future therapies. These stem cells have been shown capable of producing hepatocytes.[citation needed]
Multipotent stem cells are also found in amniotic fluid. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines.[35] All over the world, universities and research institutes are studying amniotic fluid to discover all the qualities of amniotic stem cells, and scientists such as Anthony Atala[36][37] and Giuseppe Simoni [38][39][40] have discovered important results.
Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. Roman Catholic teaching forbids the use of embryonic stem cells in experimentation; accordingly, the Vatican newspaper "Osservatore Romano" called amniotic stem cells "the future of medicine".
It is possible to collect amniotic stem cells for donors or for autologuous use: the first US amniotic stem cells bank was opened in 2009 in Medford, MA, by Biocell Center Corporation and collaborates with various hospitals and universities all over the world.

Induced pluripotent

These are not adult stem cells, but rather adult cells (e.g. epithelial cells) reprogrammed to give rise to pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue.[48][49][50] Shinya Yamanaka and his colleagues at Kyoto University used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 in their experiments on cells from human faces. Junying Yu, James Thomson, and their colleagues at the University of Wisconsin–Madison used a different set of factors, Oct4, Sox2, Nanog and Lin28,[48] and carried out their experiments using cells from human foreskin.
As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon somatic cell nuclear transfer as an avenue of research.
Frozen blood samples can be used as a source of induced pluripotent stem cells, opening a new avenue for obtaining the valued cells.

Main article: Stem cell line
To ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.
An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in Drosophila germarium have identified the signals decapentaplegic and adherens junctions that prevent germarium stem cells from differentiating.

The signals that lead to reprogramming of cells to an embryonic-like state are also being investigated. These signal pathways include several transcription factors including the oncogene c-Myc. Initial studies indicate that transformation of mice cells with a combination of these anti-differentiation signals can reverse differentiation and may allow adult cells to become pluripotent. However, the need to transform these cells with an oncogene may prevent the use of this approach in therapy.

Challenging the terminal nature of cellular differentiation and the integrity of lineage commitment, it was recently determined that the somatic expression of combined transcription factors can directly induce other defined somatic cell fates; researchers identified three neural-lineage-specific transcription factors that could directly convert mouse fibroblasts (skin cells) into fully functional neurons. This "induced neurons" (iN) cell research inspires the researchers to induce other cell types implies that all cells are totipotent: with the proper tools, all cells may form all kinds of tissue.